Ref No:		

SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019-2020

Program:	B E - CIVIL Engineering			
Semester:	4			
Course Code:	18CV46			
Course Title:	Water Supply and Treatment Engineering			
Credit / L-T-P:	3/3-0-0			
Total Contact Hours:	50			
Course Plan Author:	PRIYANKASHRI K N			

Academic Evaluation and Monitoring Cell

#29 HESARAGATTA MAIN ROAD, CHIMNEY HILLS CHIKKABANAVARA POST BANGALORE-560090 Phone -080-23721477/28392221 WWW.skit.org , EMAIL:Skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	
1. Course Outcomes	
2. Course Applications	
3. Mapping And Justification	
4. Articulation Matrix	•
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	9
Module - 1	•
Module - 2	
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	11
D2. TEACHING PLAN - 2	15
Module - 3	15
Module - 4	16
E2. CIA EXAM – 2	18
a. Model Question Paper - 2	18
b. Assignment – 2	18
D3. TEACHING PLAN - 3	22
Module - 5	22
E3. CIA EXAM – 3	23
a. Model Question Paper - 3	_
b. Assignment – 3	24
F. EXAM PREPARATION	25
1. University Model Question Paper	
2. SEE Important Questions	
Course Outcome Computation	
Academic Year:	
Odd / Even semester	28

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CV
Year / Semester:	2020/VI	Academic Year:	2019-20
Course Title:	Water Supply and Treatment Engineering	Course Code:	18CV46
Credit / L-T-P:	3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	PRIYANKASHRI K N	Sign	Dt:
Checked By:	SHIVAPRASAD D G	Sign	Dt:
CO Targets	CIA Target : 85%	SEE Target:	80%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng Hours	Concepts	Learning Levels
	Introduction: Need for protected water supply. Demand of Water: Types of water demands -domestic demand, industrial, institutional and commercial, public use, fire demand, Factors affecting percapita demand, Variations in demand of water, Peak factor, Design period and factors governing design period. Different methods of population forecasting -with merits and demerits. Numerical Problems.		Water demand Population forecasting	L3
	Water Treatment: Objectives, Treatment flow chart – significance of each unit Sources and Characteristics: surface and subsurface sources -suitability with regard to quality and quantity. Sampling Objectives, methods, Preservation techniques. Water quality characteristics: Physical, Chemical and Microbiological.		Water Sources, quality parameters analysis	L3
	Sedimentation -theory, settling tanks, types, design. Concept of Plate and Tube settlers. Coagulation aided sedimentation-types of coagulants, chemical feeding, flash mixing, Clarri flocculators. Filtration: mechanism -theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning. Operational problems in filters. Design of slow and rapid sand filter without under drainage system. Ultra and micro filtration: Basic principles, membrane materials, pore size, flux, normalizing permeability, fouling mechanism, Overview of ultra and micro filtration elements and systems, Fouling in MF/UF systems, fouling control and pretreatment.		Sedimentation tank, Filtration unit	L3
4	Softening: Overview of Lime soda, Zeolite process, RO and Nano filtration: Basic principles, Flux, Salt passage, rejection and concentration polarization. Overview of RO and nanofiltration membranes and elements, Conventional pretreatment techniques for RO and nano filtration. Disinfection: Methods of disinfection with merits and demerits, Theory of disinfection, emphasis on treatment of water for community bathing. (melas and fairs) Fluoridation and De-fluoridation.		Softening process Disinfection methods	L3
5	Collection and Conveyance of water: Intake structures - types of intakes -Factors to be considered in selection of intake structures.		Conveyance of water	L3

Pumps: Types of pumps with working principles. Nume Problems. Pipes: Design of the economical diameter for the rising I Numerical Problems. Pipe appurtenances, Valves, hydrants	main; Fire
Pipe materials: Different materials with advantages disadvantages. Factors affecting selection of pipe material Distribution system: Methods- Gravity, Pumping, Combo gravity and pumping system, Service reservoirs and capacity determination. Visit to Intake structure, Volumetreatment plant and report working of each unit Designate treatment plant units and distribution system population forecasting for the given city	al. bined their Vater gn of
- Total	50

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

5. 11030	ich. Recent developments on the concepts - publications in journats, co		
Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	S.K.Garg, Environmental Engineering vol-I, Water supply Engineering –	3, 4	In Lib / In Dept
4, 5	M/s Khanna Publishers, New Delhi 2010		
1	Mark.J Hammer, Water & Waste Water Technology, John Wiley & Sons	2, 4	In Lib/ In dept
	Inc., New York, 2008.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply	1,2,3	In Lib
	Engineering, Laxmi		
	Publications (P)Ltd., New Delhi 2010.		
1, 2	Howard S. Peavy, Donald R. Rowe, George T, Environmental Engineering	1,2,3	In Lib
	- McGraw Hill International Edition. New York, 2000		1 . 191
3, 4, 5	CPHEEO Manual on water supply and treatment engineering, Ministry of	1,2,3,4	In lib
	Urban Development, Government of India, New Delhi		
С	Concept Videos or Simulation for Understanding	-	-
C1	https://youtu.be/zVZgc6EXfTA	1,2	
C2	https://youtu.be/GSEiRtqBu6g	1,2	
C3	https://youtu.be/zVZgc6EXfTA	1,2	
C4	https://youtu.be/XTkW5_I-NA0	2,3	
C ₅	https://youtu.be/MfkJu7J1LE4	2,3	
C6	https://youtu.be/eknrvqLtbsc	2,3	
C7	https://youtu.be/d0x1A80fxdw	2,3,4	
C8	https://youtu.be/dCimAH5IRSA	2,3,4	
C9	https://youtu.be/cvUa82Qb1Hg	2,3,4	
C10	https://youtu.be/_iz8ZkjD7z8	2,3,4	
	Lab:		
D	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
	https://youtu.be/6ugLonVUYPY		
	https://youtu.be/bZHAwF4cxjk		
	https://youtu.be/zVZ9c6EXfTA		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://youtu.be/zVZ9c6EXfTA		

2	https://youtu.be/wl7uvQThX8A	
-	intepsity youtubor with a variation t	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1			 Knowledge on water treatment and supply 	2		L3
	-	-	4. Knowledge of water Demand and water quality	-	Plan Gap Course	L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Tojects, c. 14cm Software 100ts, i. a. 11E 10ples, g. 141 TEE videos, H. Swayarii videos etc.						
Mod	Topic / Description	Area	Remarks	Blooms		
ules				Level		
1	Water demand / Knowledge of water	Higher	Gap	Understa		
	requirements	Study A seminar on water demands for		nd L2		
	·	-	the public			
1	Population forecasting/Knowledge	Higher	A seminar on population	Understa		
	different forecasting methods	Study	forecasting methods	nd L2		
2	Sources of water/Knowledge of quantity	Higher	A seminar on different surface and	Understa		
	and quality of water	Study	subsurface sources	nd L2		
3	Water quality standards/Knowledge of	Higher	A seminar on physical and	Understa		
	characteristics of water	Study	chemical biological	nd L2		
			characteristics of water			
4	Design of Treatment units/Knowledge of	Higher	A seminar on conventional water	Understa		
	conventional treatment methods	Study	treatment methods	nd L2		
5	Conveyance of water/Knowledge of	Higher	A seminar on water distribution	Understa		
	distribution system	Study	networks	nd L2		

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts

per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18CV46.1	Analyze the variation of water	5	Water	Lecture	CIA	L3
		demand and to estimate water		demand			Apply
		requirement for a community.					
2	18CV46.2	Evaluate water quality and	5	Water	Lecture	CIA	L3
		environmental significance of		Quality			Apply
		various parameters and plan		analysis			
		suitable treatment system					
3	18CV46.3	To design disinfection treatment	5	Disinfection	Lecture	CIA	L3
		units in the treatment plant in the		methods			Apply
		water supply system					
4	18CV46.4	Evaluate the sources and	5	Conveyanc	Lecture	CIA	L3
		conveyance systems for raw and		e of water			Apply

			treated water					
	5	18CV46.5	Design a comprehensive water	5	Distribution	Lecture	CIA	L3
			treatment and distribution system		of water			Apply
			to purify and distribute water to the					
			required quality standards.					
Γ	-	-	Total	50	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Ottaat	this should be able to employ 7 apply the course tearnings to		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	variation of water demand and to estimate water requirement for a community.	CO1	L3
1	Forecast the population by using different methods	CO2	L3
2	Identify sources of water, quantitatively and qualitatively and make appropriate	CO3	L3
	choice for a community		
2	Analysis of physical chemical biological characteristics of water	CO4	L4
3	water quality and environmental significance of various parameters and plan	CO5	L3
	suitable treatment system		
3	To design various treatment units in the treatment plant in the water supply system	CO6	L4
4	To design various treatment units in the treatment plant in the water supply system	CO7	L4
4	Design various treatment units in the treatment plant	CO8	L4
5	Sources and conveyance of raw and treatment water	CO9	L2
5	To supply portable water the public	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

rcqui	ii Ca tc	acco	mpusi it.		
Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules	·		Level	·	el
-	СО	РО	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the solution for water independence for an entire city	L3
1	CO1	PO2	2	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to solve the total amount of water needed for a city by population forecasting	L3
1	CO1	PO3	1	The students will be able to design the water demand of a city in such a way that it will cater all the environmental/ public health needs	L3
1	CO2	PO1	1	The students will be able to analyse the water quality of a surface or ground water body and develop strategies for improving them in concern with the public health/environmental concern	L4
1	CO2	PO2	2	The students will be able to analyse the water quality of a surface or ground water body and develop strategies for improving them in con	L3
2	CO3	PO1	1	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid treatment methods to complex pollution scenarios	
2	CO3	PO2	2	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyze the characteristics of water	L4
2	CO ₄	PO3	3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyze the characteristics of water and suggest suitable treatment methods	L4
2	CO4	PO1	2	The students will be able to identify different types of pollutants and	L2

				provide a solution by their environmental application to meet the specifications with consideration for the public health and safety, and the cultural, societal, and environmental considerations	
3	CO ₅	PO3	3	The students will be able to apply the knowledge of physical chemical and biological characteristics of water to know strength of water	L2
3	CO5	PO4	2	The students will be able to design individual treatment units in concern with the environment	L3
3	CO6	PO3	3	The students will be able to initiate the design solutions for rapid and slow sand filters in such a way that it will be cost effective and efficient	L3
3	CO6	PO4	2	The students will be able to design individual treatment units in concern with the environment	L3
4	CO7	PO3	3	The students will be able to initiate the design solutions for softening units in such a way that it will be cost effective and efficient	L4
4	CO7	PO4	2	The students will be able to design individual treatment units in concern with the environment	L4
4	CO8	PO1	1	The students will be able to use research-based knowledge and research methods including design of units, analysis and interpretation of data, and synthesis of the information to provide valid disinfection treatment methods to complex pollution scenarios	
4	CO8	PO2	2	The students will be able to apply the knowledge of biological characteristics of water to know strength of water in the disinfection unit	L4
5	CO9	PO1	1	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyse and solve the complex water network system for a community/city	L3
5	CO9	PO2	2	The students will be able to design water network system by analyzing the layout of the city and available water sources	L3
5	CO10	PO1	1	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyse and solve the complex water distribution system for a city	L3
5	CO10	PO ₂	2	The students will be able to design water distribution network system by analyzing the layout of the city and available water sources	L3

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

	- Course Outcomes Program Outcomes -																	
-	-	Course Outcomes																-
Mod	CO.	At the end of the course	PO	Р	PS	PS	PS	Lev										
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	01	01	02	О3	el
														2				
1	18CV46.1	Analyze the variation of water	3	2	1	-	-	-	-	-	-	-	-	-	-	-	-	L3
		demand and to estimate water																
		requirement for a community.																
1	18CV46.2	To understand the methods of	1	2	-	-	-	-	-	-	-	-	-	-	_	-	-	L3
		population forecasting to meet																
		water demands for a community																
2	18CV46.3	Evaluate available sources of	1	2	-	-	-	-	-	-	1	-	-	-	-	-	1	L3
		water, quantitatively and																
		qualitatively and make																
		appropriate choice for a																
		community.																
2	18CV46.4	Evaluate water quality and	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
		environmental significance of																
		various parameters and plan																
		suitable treatment system																
3	18CV46.5	Design settling tank and	-	-	3	2	-	-	-	-	-	-	-	-	-	-	-	L3
		coagulation tank to remove																
		particles to get safe and potable																
		water Supply.																
3	18CV46.6	Design Different types of filters to	-	-	3	2	-	-	-	-	-	-	-	-	-	-	-	L4

		remove particles to get safe and potable water Supply.																
4	18CV46.7	To design Hardness removal units in the treatment plant in the water supply system	l	-	3	2	-	-	-	-	1	-	-	-	-	-	-	L4
4		To design disinfection treatment units in the treatment plant in the water supply system		2	-	-	-	-	ı	-	ı	-	-	-	-	-	ı	L4
5	. 0	Evaluate the sources and conveyance systems for raw and treated water	_	2	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
5		Design a comprehensive water treatment and distribution system to purify and distribute water to the required quality standards.		2	_	-	-	-	-	_	-	-	-	-	-	-	-	L2
-	CS501PC	Average attainment (1, 2, or 3)	2.5	2.5	1.5	1.5	-	-	ı	-	1	-	-	-	-	-	•	L2- L4
-		1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project N S1.Software Engineering; S2.Data E	lex i ustc 1an	Prol iina age	bler bilit eme	ns; , ty; ent	5.M 8.E ar	lode thic nd	ern es; Fir	Too 9.li nand	l Us ndiv ce;	age idu 12	e; 6. al	The an	e En Id	gin Tea	eer ımv	and ork;

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each

student. 1 Assignment per chapter per student. 1 seminar per test per student.

	water.									
1	Collection and Conveyance of water:	10	-	-	4	1	1	2	CO9, CO10	L4, L5
<u> </u>	Softening	10	-	2	-	1	1	2	CO7, C08	L2, L3
	Coagulation aided sedimentation	10	-	2	-	1	1	2	CO5, CO6	
2	Water Treatment	10	2	-	-	1	1	2	CO3, CO4	
	Introduction: Need for protected water supply	10	2	-	ı	1	1	2	CO1, CO2	L1, L2
<u> </u>	Later David Communication						Asg		00. 00-	1.1.
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
Mod	Title Teach. No. of question in Exam							CO	Levels	

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1,2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L1, L2, L3,
3,4	CIA Exam – 2	15	CO5, CO6, CO7, C08	L1, L2, L3,
5	CIA Exam – 3	15	CO9, CO10	L1, L2, L3,
1,2	Assignment - 1	05	CO1, CO2, CO3, CO4	L1, L2, L3,
3,4	Assignment - 2	05	CO5, CO6, CO7, CO8	L1, L2, L3,
5	Assignment - 3	05	CO9, CO10	L1, L2, L3,
1,2	Seminar - 1	05	CO1, CO2, CO3, CO4	L1, L2, L3,
3,4	Seminar - 2	05	CO5, CO6,CO7,CO8	L1, L2, L3,
5	Seminar - 3	05	CO9, CO10	L1, L2, L3,
	Other Activities – define – Slip test		CO1 to Co9	L1, L2, L3,
	Final CIA Marks	20	-	

D1. TEACHING PLAN - 1

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes		Blooms
-	The student should be able to:	_	Level
1	Analyze the variation of water demand and to estimate water requirement for a community.	CO1	L3
2	To understand the methods of population forecasting to meet water demands for a community	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Introduction: Need for protected water supply	C01	L3
2	Demand of Water: Types of water demands -domestic demand,	C01	L3
3	industrial, institutional and commercial, public use,	C01	L3
4	fire demand,	C01	L3
5	Factors affecting percapita demand,	C01	L3
6	Variations in demand of water	CO2	L3
7	Peak factor,	CO2	L3
8	Design period and factors governing design period	CO2	L3
9	Different methods of population forecasting with merits and demerits	CO2	L3
10	Numerical Problems.	CO2	L3
С	Application Areas	СО	Level
1	Demand of water in water supply scheme	CO ₁	L3
2	Forecasting population to meet public demands	CO2	L3
	g population of position and the second of t		
d	Review Questions	-	-
1	Explain necessity of water supply scheme	CO1	L1
2	Explain the various types of water demand.	CO1	L3
3	What is meant by per capita demand?	CO2	L2
4	Mention the factors that affect per capita demand	CO2	L4
5	What is meant by design period? Discuss the factors affecting design period.	CO2	L2
6	Define population forecasting	CO2	L3
7	Explain methods of population Forecasting	CO2	L2
8	Describe the incremental method of estimating the population of a locality.	CO2	L3
9	Describe the incremental method of estimating the population of a locality.	CO2	L3
10	Describe the incremental method of estimating the population of a locality.	CO1	L1
11	Explain briefly about Peak factor	CO1	L3
12	Discuss the environmental pollution due to human activities.	CO2	L2
13	What is meant by per capita demand? List and discuss the factors that affect the per capita demand.	CO2	L3
14	The following is the population data of a city available from past census records. Determine the future population of the city in 2030 by i) Arithmetical increase method and ii) Geometrical increase method.	CO2	L2
	Year Population		
	1960 25,000		
	1970 28,000		
	1980 34,000		
	1990 42,000		

	2000	47,000			
15	The por	oulation of a tow	n is as below	CO2	L3
	Year	population	n		
	1980	30000			
	1990	36000			
	2000	45000			
	2010	53000			
16	populat		n of the year 2000 and 2006 for a city whose 930 was 25,000 and in the year 1970 was 47,000. Make se method.	CO2	L3
е	Experie	nces		-	-
1					
2					
3					
4					
5					

Module	2		
Title:	Divide and Conquer	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Evaluate available sources of water, quantitatively and qualitatively and make	CO1	L3
	appropriate choice for a community.		
2	Evaluate water quality and environmental significance of various parameters	CO2	L3
	and plan suitable treatment system		
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
17	Water Treatment: Objectives	CO1	L3
18	Water quality characteristics: Physical	CO1	L3
19	Water quality characteristics: Chemical	CO2	L3
20	Water quality characteristics: Microbiological	CO2	L3
21	Treatment flow chart significance of each unit	CO2	L3
22	Sources and Characteristics: surface and subsurface sources suitability with	CO2	L3
	regard to quality and quantity.		
23	Sampling techniques.	CO2	L3
24	Sampling Objectives,	CO2	L3
25	Sampling methods, Preservation	CO2	L3
С	Application Areas	СО	Level
1	To find suitable water sources qualitatively and quantitatively	CO1	L3
2	To supply portable water to water supply scheme	CO2	L3
		CO2	
d	Review Questions	CO2	_
12	Write the desirable limits for the following parameters as per BIS : 10500 —	CO1	L1
	1991 :		
	i) Color ii) pH iii) Total hardness iv) Nitrate v) Total dissolved solids vi) Iron vii)		
	Fluoride viii) Chloride ix) Alkalinity x) Turbidity.		
13	Explain in brief grab sampling and composite sampling.	CO1	L3
14	In a water treatment plant the pH values of incoming and outgoing water are	CO2	L2
	7.2 and 8.4 respectively. Find average value of pH, assuming linear variation of		
	pH with time.		

15	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator	CO1	L4
16	Mention the permissible limits for the following parameters and explain the environmental significance of each: Hardness, Nitrate, Fluorides and Iron.	CO1	L2
17	Write a note on properties of whole some water.	CO2	L3
18	Briefly explain the water borne diseases and their control.	CO2	L2
19	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	CO2	L3
20	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	CO2	L3
21	Explain with chemical equations, what happens when alum is added to water?	CO2	L3
22	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min.	CO2	L2
23	Explain the significance of the following impurities with respect to quality of water: i) Turbidity ii) Hardness iii) Fluoride iv) Nitrate	CO2	L3
24	Explain the multiple fermentation tube test.	CO1	L2
25	Write a note on water borne diseases and their control.	CO1	L3
26	Enumerate the various physical and chemical characteristics of testing of raw water supplies	CO2	L2

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	18CV46	Sem:6		Marks:	30	Time:	75 minute	es	
Cour	se:	Water supp	ly and treatn	nent engine	eering					
-	-	Note: Answ	er all questi	ons, each c	arry equa	ıl marks. I	Module : 1, 2	Marks	СО	Level
1	a	Explain nec	essity of wat	er supply s	cheme			8	CO1	L1
	b	Explain the	various type	s of water c	demand.			7	CO1	L2
					OR				CO2	
2	а	Mention the	factors that	affect per d	capita den	nand		8	CO2	L2
		What is me period.	eant by des	ign period?) Discuss	the facto	rs affecting desi	gn 7	CO2	L3
									CO2	
3	a	— 1991 : i) C		Total hardn	ess iv) Nit	rate v) Tot	as per BIS : 10500 al dissolved solic y.		CO2	L2
		population)30 was 25,	000 and ir		a city whose 1970 was 47,000	7	CO2	L2
					OR					
4		Explain with water?	n chemical e	quations, w	hat happe	ns when a	alum is added to	7	CO3	L2
		Design the the raw wat	dimensions (of a suitable Take detent	e rectangu ion time p	lar sedim eriod of 4	k plant is 8 MLD. entation tank for hours and the	8	CO4	L2

	Model Assignment Questions										
Course	18CV46	Sem:	4	Marks:	5 / 10	Time:	90 – 120 i	minute:	S		
Code:											
Course:	Water su	pply and t	reatment (engineering							
Note: Each	student t	o answer a	2-3 assign	ments. Each assi	gnment c	arries equal ma	ark.				
SN	lo	Assignment Description				Marks	CO	Level			
1	1 Explain necessity of water supply scheme				5	CO2	L3				
2	Explain the	xplain the various types of water demand.				5	CO1	L3			

3	What is meant by percapita demand?	5	CO ₂	L3
4	Mention the factors that affect per capita demand	<u>5</u>	CO2	<u>L3</u>
5	What is meant by design period? Discuss the factors affecting design period.	5	CO ₂	L3
6	Define population forecasting	5	CO2	L3
7	Explain methods of population Forecasting	5	CO2	L3
8	Describe the incremental method of estimating the population of a locality.	5	CO2	L3
9	Describe the incremental method of estimating the population of a locality.	5	CO2	L3
10	Describe the incremental method of estimating the population of a locality.	5	CO1	L3
11	Explain briefly about Peak factor	5	CO1	L3
12	Discuss the environmental pollution due to human activities.	5	CO2	L3
13	What is meant by per capita demand? List and discuss the factors that affect the per capita demand.	5	CO2	L3
9	The following is the population data of a city available from past census records. Determine the future population of the city in 2030 by i) Arithmetical increase method and ii) Geometrical increase method. Year Population	5	CO2	L3
	1960 25,000			
	1970 28,000			
	1980 34,000			
	1990 42,000			
	2000 47,000			
10	The population of a town is as below	5	CO ₂	
	Year population	•		•
	1980 30000			
	1990 36000			
	2000 45000			
	2010 53000			
11	Compute the population of the year 2000 and 2006 for a city whose population in the year 1930 was 25,000 and in the year 1970 was 47,000. Make use of geometric increase method.	5	CO2	L3
12	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L3
13	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO1	L3
14	Explain with chemical equations, what happens when alum is added to water?	5	CO2	L3
15	Explain the method of sampling of water.	5	CO2	L3
16	Write the desirable limits for the following parameters as per	5	CO2	L3
	BIS : 10500 — 1991 : i) Color ii) pH iii) Total hardness iv) Nitrate v) Total dissolved solids vi) Iron vii) Fluoride viii) Chloride ix) Alkalinity x) Turbidity.			
17	Explain in brief grab sampling and composite sampling.	5	CO2	
18	In a water treatment plant the pH values of incoming and	5	CO2	L3
	outgoing water are 7.2 and 8.4 respectively. Find average value of pH, assuming linear variation of pH with time.			
19	What is aeration? with neat sketches, explain slat tray aerator	5	CO ₂	L3
-9	and trickling bed aerator			

20	Mention the permissible limits for the following parameters	5	CO ₂	L3
	and explain the environmental significance of each: Hardness,			
	Nitrate, Fluorides and Iron.			
21	Write a note on properties of whole some water.	5	CO1	L3
22	Briefly explain the water borne diseases and their control.	5	CO1	L3
23	Give complete sequence of a water treatment plant with a	5	CO2	L3
	flow diagram and mention the function of each treatment unit.			
24	Give complete sequence of a water treatment plant with a	5	CO2	L3
	flow diagram and mention the function of each treatment unit.			
25	Explain with chemical equations, what happens when alum is	5	CO2	L3
	added to water?			
26	The maximum daily demand at a water purification tank plant	5	CO2	L3
	is 8 MLD. Design the dimensions of a suitable rectangular			
	sedimentation tank for the raw water supplies. Take detention			
	time period of 4 hours and the depth of 3.0mts. The velocity of			
	flow is 20cm/min.			
27	Explain the significance of the following impurities with	5	CO2	L3
	respect to quality of water: i) Turbidity ii) Hardness iii) Fluoride			
	iv) Nitrate			
28	Explain the multiple fermentation tube test.	5	CO1	L3
29	Write a note on water borne diseases and their control.	5	CO2	
30	Enumerate the various physical and chemical characteristics	<u>5</u>	CO2	<u></u>
30	of testing of raw water supplies	5		<u>_</u> 3
31	Give the drinking water standards for the following		CO2	L3
31	parameters. Discuss their effect when	5	CO2	L3
	they exceed their limits : i) Turbidity ii) Hardness iii) Chlorides iv)			
	Fluoride.			
		_	COa	1.0
32	Explain the method of sampling of water.	5	CO2	L3
33	Briefly explain the complete treatment process of a water	5	CO2	L3
	supply scheme with flow chart.			
34	Write short notes on : a. Fire hydrants.	5	CO2	L3
	b. Pressure release valve.			
	c. Metering in distribution system.			
	d. Jar test			
35	Explain necessity of water supply scheme	5	CO2	L3
36	Explain the various types of water demand.	5	CO1	L3
37	What is meant by percapita demand?	5	CO2	L3
38	Mention the factors that affect per capita demand	5	CO2	L3
39	What is meant by design period? Discuss the factors affecting	5	CO2	L3
	design period.			
40	Define population forecasting	5	CO2	L3
41	Explain methods of population Forecasting	5	CO2	L3
42	Describe the incremental method of estimating the population	5	CO2	 L3
,-	of a locality.	9		_5
43	Describe the incremental method of estimating the population	5	CO2	L3
43	of a locality.	J	002	_5
44	Describe the incremental method of estimating the population	5	CO1	L3
44	of a locality.	5		L3
4.5	<i>'</i>		CO1	1.0
45	Explain briefly about Peak factor	5		L3
46	Discuss the environmental pollution due to human activities.	5	CO2	L3
47	What is meant by per capita demand? List and discuss the	5	CO ₂	L3
	factors that affect the per capita			
	demand.			
48	The following is the population data of a city available from	5	CO2	L3
	past census records. Determine			
	the future population of the city in 2030 by i) Arithmetical			
	increase method and ii) Geometrical increase method.			
	Year Population			

	1960	25,000)				
	1970	28,000)				
	1980	34,000)				
	1990	42,000)				
	2000	47,000)				
40	Thopon	aulation	of a toyyon i	s as balaw		CO2	1.0
49	Year		or a town i opulation	s as below 	5	CO2	L3
		- '	•				
	1980		0000				
	1990		6000				
	2000	4	5000				
	2010	5	3000				
50				of the year 2000 and 2006 for a city	5	CO2	L3
				ear 1930 was 25,000 and in the year e of geometric increase method.			
51				of a water treatment plant with a	5	CO2	L3
<u> </u>				the function of each treatment unit.			
52				of a water treatment plant with a	5	CO1	L3
				the function of each treatment unit. ations, what happens when alum is		CO2	La
53		o water?		ations, what happens when alum is	5	CO2	L3
54	Explain	the met	hod of san	npling of water.	5	CO2	L3
55				or the following parameters as per	5	CO2	L3
		500 — 19		acce iv) Nitrato v) Total dissolved			
				ness iv) Nitrate v) Total dissolved viii) Chloride ix) Alkalinity x) Turbidity.			
56				ling and composite sampling.	5	CO2	L3
57	In a wat	er treatr	nent plant	the pH values of incoming and	5	CO2	L3
				8.4 respectively. Find average value			
58				ation of pH with time. t sketches, explain slat tray aerator	5	CO2	L3
50			d aerator	t sketeries, explain stat tray derator	5	002	_3
59				mits for the following parameters	5	CO2	L3
				ental significance of each : Hardness,			
60			es and Iron.	of whole some water.	5	CO1	L3
61				orne diseases and their control.	5	CO1	<u></u>
62				of a water treatment plant with a	5	CO2	<u></u>
_				the function of each treatment unit.			
63				of a water treatment plant with a the function of each treatment unit.	5	CO2	L3
64				ations, what happens when alum is	5	CO2	
0-1		o water?			J		_5
65				nd at a water purification tank plant	5	CO2	L2
				nsions of a suitable rectangular			
				raw water supplies. Take detention the depth of 3.0mts. The velocity of			
		20cm/m					
66				of a water treatment plant with a	5	CO2	L2
67				the function of each treatment unit.		CO2	1.0
67				of a water treatment plant with a the function of each treatment unit.	5	CO2	L2
68				ations, what happens when alum is	5	CO2	L2
	added t	o water?			_		
69	Explain	the met	hod of san	npling of water.	5	CO2	L2

70	Write the desirable limits for the following parameters as per BIS : 10500 — 1991 :	5	CO2	L2
	i) Color ii) pH iii) Total hardness iv) Nitrate v) Total dissolved solids vi) Iron vii) Fluoride viii) Chloride ix) Alkalinity x) Turbidity.			
71	Explain in brief grab sampling and composite sampling.	5	CO2	L2
72	In a water treatment plant the pH values of incoming and outgoing water are 7.2 and 8.4 respectively. Find average value of pH, assuming linear variation of pH with time.	5	CO2	L2
73	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator	5	CO2	L2
74	Mention the permissible limits for the following parameters and explain the environmental significance of each: Hardness, Nitrate, Fluorides and Iron.	5	CO2	L2
75	Write a note on properties of whole some water.	5	CO2	L2
76	Briefly explain the water borne diseases and their control.	5	CO2	L2
77	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L2
78	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO2	L2
79	Explain with chemical equations, what happens when alum is added to water?	5	CO2	L2
80	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min.	5	CO2	L2

ment to be assigned to each student.

D2. TEACHING PLAN - 2

Module -	•3		
Title:	Divide and Conquer	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Study drinking water quality standards and to illustrate qualitative analysis of water	CO3	L2
2	Design physical, chemical and biological treatment methods to ensure safe and potable water Supply.	CO ₄	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Sedimentation theory, settling tanks, types, design. Concept of Plate and Tube settlers.	CO3	L2
2	Coagulation aided sedimentation types of coagulants,	CO ₄	L2
3	Filtration: mechanism theory of filtration, types of filters,	CO3	L2
4	chemical feeding, flash mixing,	CO ₄	L2
5	Clarri flocculators	CO3	L2
6	slow sand, rapid sand and pressure filters including construction, operation, cleaning	CO ₄	L3
7	Operational problems in filters. Design of slow and rapid sand filter without under drainage system.	CO3	L3
8	Ultra and micro filtration: Basic principles, membrane materials, pore size, flux, normalizing permeability,	CO3	L3
9	fouling mechanism, Overview of ultra and microfiltration elements and systems,	CO ₄	L3
10	Fouling in MF/UF systems, fouling control and pre treatment	CO3	L3
С	Application Areas	СО	Level

1	Design of water and wastewater units	CO1	L3
2	Ultra and micrifiltration techniques in treatment process	CO2	
	· ·		
d	Review Questions	-	-
1	Briefly explain the complete treatment process of a water supply scheme with flow chart.	CO3	L3
2	What is Aeration? Explain the types of aerators.	CO4	L3
3	Describe briefly the various constituents of coagulation — sedimentation plant.	CO3	L3
4	Define sedimentation ow that settlement of the particles in sedimentation unit is independent of depth.	CO4	L3
5	Explain the method of determining optimum dosage of coagulant with the aid of neat sketch.	CO3	L3
6	A circular sedimentation fitted with standard mechanical sludge removal is to handle 5 million litres/day of sewage. Take detention period as 5 hr and depth of tank as 3 m. Find the dia. of the tank.	CO4	L3
7	Define filtration. Explain the principle underlying filtration process.	CO3	L3
8	List and explain the various operating problems during the filtration process.	CO ₄	L3
9	a. Explain in detail the theory of filtration.	CO3	L3
10	With the help of a neat sketch, explain the working of Rapid gravity filter	CO4	L3
11	Explain with a neat sketch working of a pressure filter	CO3	L3
12	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	CO4	L3
13	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	CO3	L3
14	Explain with chemical equations, what happens when alum is added to water?	CO4	L3
15	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	CO3	L3
16	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadth0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	CO3 CO4	L3
е	Experiences	_	_
1	F. 1 . 1 . 2		
2			
3			
4			
5			

Title:	Divide and Conquer	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	To design various treatment units in the treatment plant in the water supply system	CO5	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Softening: Overview of Lime soda,	CO5	L2
2	Zeolite process, RO and Nano filtration:	CO ₅	L2

3	Basic principles, Flux, Salt passage,	CO ₅	L2
4	rejection and concentration polarization.	CO ₅	L2
5	Overview of RO and nano filtration membranes and elements,	CO ₅	L2
6	Conventional pretreatment techniques for RO and nano filtration.	CO5	L2
7	Disinfection: Methods of disinfection with merits and demerits,	CO ₅	L2
8	emphasis on treatment of water for community bathing. (melas and fairs)	CO5	L2
9	Theory of disinfection,	CO ₅	L2
10	Fluoridation and Defluoridation	CO ₅	L2
С	Application Areas	СО	Level
1	To design water and wastewater treatment plant	CO5	L3
2	To provide safe and portable water to public	CO ₅	L3
d	Review Questions	-	-
1	Explain the terms pre — chlorination, post chlorination, Break point	CO ₅	L3
	chlorination and Super chlorination.	CO-	1.0
2	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	CO ₅	L3
3	Briefly explain Zeolite process of hardness removal	CO5	L3
4	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	CO ₅	L3
5	What is aeration? Explain the type of aerators.	CO ₅	L3
6	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each	CO5	L3
7	With the help of a neat sketch, explain the working of Rapid gravity filter.	CO5	L3
8	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	CO5	L3
9	Explain briefly the following processes : i) Break point chlorination ii) Superchlorination.	CO5	L3
10	Mention the methods of softening the water. Describe zeolite process of softening water in detail	CO5	L3
11	explain briefly : i) Defluoridation ii) Desalination.	CO ₅	L3
12	With sketches, explain briefly dead end system and grid iron system of distribution networks.	CO ₅	L3
13	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator.	CO5	L3
14	How you will determine the optimum coagulant dosage in Lab using Jar test apparatus? Discuss with sketch.	CO5	L3
15	Determine quantity of alum needed to treat 13 million litres of water per day in treatment plant. The dosage of alum12mg/f. Also find amount of CO2 released per liter of water treated. Assume molecular weight of At = 26.97, S = 32.066, 0 = 16, H = 1.008	CO5	L3
16	write explanatory note on : i) Ozone treatment ii) UV treatment iii) Chlorination iv) Electro — Katadyn process v) Treatment with KMn04.	CO5	L3
17	Write the comparison between soda lime process and Zeolite process of softening of water techniques	CO ₅	L3
		CO-	L3
18	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	CO ₅	
18		CO5	L3

	per litre and chlorine demand of the water.		
е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code	18CV46	Sem:	4	Marks:	30	Time:	75 minute	·S	
Cour	rse:	Water supp	oly and treat	ment engin	eeing					
-	-	Note: Answ	ver all quest	ions, each	carry equa	al marks. Mo	odule : 3, 4	Marks	CO	Level
1	а					chlorination	, Break point	8	CO5	L3
			n and Super							
	b		sage in the ti					7	CO5	L3
							Calculate the			
		dosage in r	milligrams p	er litre and o		emand of the	e water.		00-	
_		N/C11 11 1	1 6		OR	1. (5			CO5	
2	a						pid gravity filte		CO5	L3
	b		slow sand fil					7	CO5	L3
			to be served							
							ch bed = Twice s the average			
							s the average be kept as stand	4		
		by.	1110.71.50 055	arrio triat or	ic ariit, oat	OI SIX, WILL K	o Ropt as stark	۵		
3	а	write expla	natory note	on :				8	CO5	L3
			eatment ii) U							
		iii) Chlorina	tion iv) Elect	ro — Katady	yn process	v) Treatmer	nt with KMn04.			
	b	Write the c	omparison b	etween so	da lime pro	ocess and Z	eolite process	of 7	CO5	L3
		softening c	of water tech	niques						
					OR				CO5	
4	a						pid gravity filte	r. 8	CO5	L3
	b		slow sand fil			_		7	CO5	L3
			to be served							
							ch bed = Twice			
							s the average	.		
		I	nd. Also ass	ume that or	ne unit, out	OT SIX, WILL K	e kept as stan	a		
		by.								

b. Assignment – 2

			Мо	odel Assignmer	nt Questions	5			
Crs Code:	18CV46	Sem:	6	Marks:	5 / 10	Time:	90 - 120	90 – 120 minutes	
Course:	Water s	upply and t	reatment	engineering					
	•				•				
SNo			Α	ssignment De	scription		Marks	CO	Level
1		Briefly explain the complete treatment process of a water					er 5	CO5	L3
		supply scheme with flow chart.							
2		What is Aeration? Explain the types of aerators.					5	CO5	L3
3	}	Describe briefly the various constituents of coagulation -					- 5	CO5	L3
		sedimentation plant.							
4	ļ			n ow that settle		e particles in	5	CO5	L3
			sedimentation unit is independent of depth.						
5				of determining		osage of	5	CO5	L3
				id of neat sket					
6		A circular s	sedimenta	ition fitted with	standard m	echanical	5	CO5	L3
		sludge ren	noval is to	handle					

	5 million litres/day of sewage. Take detention period as 5 hr and depth of tank as 3 m. Find the dia. of the tank.			
7	Define filtration. Explain the principle underlying filtration process.	5	CO ₅	L3
8	List and explain the various operating problems during the filtration process.	5	CO ₅	L3
9	a. Explain in detail the theory of filtration.	5	CO5	L3
10	With the help of a neat sketch, explain the working of Rapid gravity filter	5	CO ₅	L3
11	Explain with a neat sketch working of a pressure filter	5	CO5	L3
12	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	5	CO5	L3
13	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO ₅	L3
9	Explain with chemical equations, what happens when alum is added to water?	5	CO ₅	L3
10	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	5	CO5	L3
11	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadtho, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
12	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO5	L3
13	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO5	L3
14	Briefly explain Zeolite process of hardness removal	5	CO5	L3
15	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	5	CO ₅	L3
16	What is aeration? Explain the type of aerators.	5	CO ₅	L3
17	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each	5	CO ₅	L3
18	With the help of a neat sketch, explain the working of Rapid gravity filter.	5	CO5	L3
19	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
20	Explain briefly the following processes : i) Break point chlorination ii) Superchlorination.	5	CO ₅	L3
21	Mention the methods of softening the water. Describe zeolite process of softening water in detail	5	CO ₅	L3
22	explain briefly : i) Defluoridation ii) Desalination.	5	CO ₅	L3
23	With sketches, explain briefly dead end system and grid iron system of distribution networks.	5	CO5	L3

24	What is aeration? with neat sketches, explain slat tray aerator and trickling bed aerator.	5	CO ₅	L3
25	How you will determine the optimum coagulant dosage in Lab using Jar test apparatus? Discuss with sketch.	5	CO ₅	L3
26	Determine quantity of alum needed to treat 13 million litres of water per day in treatment plant. The dosage of alum12mg/f. Also find amount of CO2 released per liter of water treated. Assume molecular weight of At = 26.97, S = 32.066, O = 16, H = 1.008	5	CO5	L3
27	write explanatory note on : i) Ozone treatment ii) UV treatment iii) Chlorination iv) Electro — Katadyn process v) Treatment with KMn04.	5	CO ₅	L3
28	Write the comparison between soda lime process and Zeolite process of softening of water techniques	5	CO ₅	L3
29	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO ₅	L3
30	Briefly explain Zeolite process of hardness re	5	CO5	L3
31	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO ₅	L3
32	Define filtration. Explain the principle underlying filtration process.	5	CO ₅	L3
33	List and explain the various operating problems during the filtration process.	5	CO ₅	L3
34	a. Explain in detail the theory of filtration.	5	CO5	L3
35	With the help of a neat sketch, explain the working of Rapid gravity filter	5	CO ₅	L3
36	Explain with a neat sketch working of a pressure filter	5	CO5	L3
37	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	5	CO5	L3
38	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO ₅	L3
39	Explain with chemical equations, what happens when alum is added to water?	5	CO ₅	L3
40	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	5	CO5	L3
41	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadtho, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
42	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO ₅	L3
43	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO ₅	L3
44	Briefly explain Zeolite process of hardness removal	5	CO5	L3
45	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	5	CO ₅	L3

46	Describe briefly the various constituents of coagulation — sedimentation plant.	5	CO ₅	L3
47	Define sedimentation ow that settlement of the particles in sedimentation unit is independent of depth.	5	CO ₅	L3
48	Explain the method of determining optimum dosage of coagulant with the aid of neat sketch.	5	CO ₅	L3
49	A circular sedimentation fitted with standard mechanical sludge removal is to handle 5 million litres/day of sewage. Take detention period as 5 hr and depth of tank as 3 m. Find the dia. of the tank.	5	CO5	L3
50	Define filtration. Explain the principle underlying filtration process.	5	CO ₅	L3
51	List and explain the various operating problems during the filtration process.	5	CO ₅	L3
52	a. Explain in detail the theory of filtration.	5	CO ₅	L3
53	With the help of a neat sketch, explain the working of Rapid gravity filter	5	CO ₅	L3
54	Explain with a neat sketch working of a pressure filter	5	CO ₅	L3
55	Determine the dimensions of a set of rapid gravity filters for treating water required for a population of 50,000 with average rate of demand as 180 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	5	CO5	L3
56	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	5	CO ₅	L3
57	Explain with chemical equations, what happens when alum is added to water?	5	CO ₅	L3
58	The maximum daily demand at a water purification tank plant is 8 MLD. Design the dimensions of a suitable rectangular sedimentation tank for the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min	5	CO5	L3
59	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadtho, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO5	L3
60	Explain the terms pre — chlorination, post chlorination, Break point chlorination and Super chlorination.	5	CO ₅	L3
61	Chlorine usage in the treatment of 20,000 cubic meter per day is 8kg/day. The residual after 10 min contact is 0.20mg/l. Calculate the dosage in milligrams per litre and chlorine demand of the water.	5	CO ₅	L3
62	Briefly explain Zeolite process of hardness removal	5	CO5	L3
63	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	5	CO5	L3
64	What is aeration? Explain the type of aerators.	5	CO5	L3
65	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each	5	CO ₅	L3
66	With the help of a neat sketch, explain the working of Rapid gravity filter.	5	CO ₅	L3
67	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	5	CO ₅	L3

68	Explain briefly the following processes : i) Break point chlorination ii) Superchlorination.	5	CO ₅	L3
69	Mention the methods of softening the water. Describe zeolite	5	CO ₅	L3
	process of softening water in detail			

D3. TEACHING PLAN - 3

Title:	Divide and Conquer	Appr	16 Hrs
Title.	Divide and Conquer	Appr Time:	10 115
а	Course Outcomes	-	Blooms
-	The student should be able to:	_	Level
1	Evaluate the sources and conveyance systems for raw and treated water	CO5	L3
2	Design a comprehensive water treatment and distribution system to purify and	CO5	<u></u> L3
	distribute water to the required quality standards.		_5
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Collection and Conveyance of water: Intake structures	CO ₅	L4
2	types of intakes Factors to be considered in selection of intake structures.	CO5	L4
3	Pumps: Types of pumps with working principles.	CO5	L4
4	Pipe appurtenances, Valves, Fire hydrants	CO5	L4
5	Distribution system: Methods	CO5	L4
6	Gravity, Pumping, Combined gravity and pumping	CO5	L4
	system, Service reservoirs and their capacity determination.		
7	Visit to Intake structure, Water treatment plant and report working of each unit	CO ₅	L4
8	Design of water treatment plant units and distribution system with population	CO ₅	L4
	forecasting for the given city		
9	Pipe materials: Different materials with advantages and disadvantages. Factors	CO5	L4
	affecting selection of pipe material		
10	Numerical Problems.	CO5	L4
С	Application Areas	СО	Level
1	Collection and conveyance of water and waste water	CO5	L3
2	Design of pipes and pumps	CO5	L4
d	Review Questions	-	_
1	With a neat sketch, explain the radial system and dead end system used in	- CO5	- L1
	With a neat sketch, explain the radial system and dead end system used in distribution	- CO5	- L1
1	With a neat sketch, explain the radial system and dead end system used in distribution networks.		
-	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain:	- CO5	L1
1	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR)		
1	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve		
1	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve		
2	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	CO5	L3
1	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following:		
2	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	CO5	L3
2	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection.	CO5	L3
2	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda"	CO5	L3
3	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation.	CO5	L3
3 4 5	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation. What is aeration? Explain the type of aerators.	CO5 CO5 CO5	L2 L4 L2
3	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation. What is aeration? Explain the type of aerators. Describe the various methods of distribution of water and discuss the	CO5	L3
1 2 3 4 5 6	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation. What is aeration? Explain the type of aerators. Describe the various methods of distribution of water and discuss the advantages and disadvantages of each.	CO5 CO5 CO5	L2 L4 L2 L5
1 2 3 4 5	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation. What is aeration? Explain the type of aerators. Describe the various methods of distribution of water and discuss the advantages and disadvantages of each. Write explanatory notes with sketch on the following: a.Firehydrant.	CO5 CO5 CO5	L2 L4 L2
1 2 3 4 5 6 7	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iii) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation. What is aeration? Explain the type of aerators. Describe the various methods of distribution of water and discuss the advantages and disadvantages of each. Write explanatory notes with sketch on the following: a.Firehydrant. b. Air valves. c. Sluice valves. d. Pressure relief valves	CO5 CO5 CO5 CO5	L2 L4 L2 L5
1 2 3 4 5 6	With a neat sketch, explain the radial system and dead end system used in distribution networks. With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant. Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint. What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" of defluoridation. What is aeration? Explain the type of aerators. Describe the various methods of distribution of water and discuss the advantages and disadvantages of each. Write explanatory notes with sketch on the following: a.Firehydrant.	CO5 CO5 CO5	L2 L4 L2 L5

3			
2			
1			
е	Experiences	-	-
20	With a sketch, explain : i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	CO5	L4
19	With a neat sketch, explain the radial system and dead end system used in distribution networks.	CO5	L3
18	With sketches, explain briefly dead end system and grid iron system of distribution networks.	CO5	L2
17	Write short notes on any four of the following : a. Five demands of water b. Infiltration Gallery c. Indicator organism. d. Air Binding e. Nalgonda technique f. Nomograms.	CO5	L5
16	Enumerate the various physical and chemical characteristics of testing of raw water supplies.	CO5	L2
15	Give the drinking water standards for the following parameters. Discuss their effect when they exceed their limits: i) Turbidity ii) Hardness iii) Chlorides iv) Fluoride.	CO ₅	L4
14	Explain the method of sampling of water.	CO5	L2
13	Briefly explain the complete treatment process of a water supply scheme with flow chart	CO5	L3
12	Write short notes on : a. Fire hydrants. b. Pressure release valve. c Metering in distribution system. d. Jar test.	CO5	L1
11	a. Explain briefly : i) Defluoridation ii) Desalination.	CO5	L4
10	Explain the Sluice valve used usually in distribution system with a neat sketch.	CO5	L1
9	Explain fluoridation and defluoridation in detail.	CO ₅	L4

E3. CIA EXAM – 3

a. Model Question Paper - 3

Cour		18CV46	Sem:	4	Marks:	30	Time:	75 minutes		
Cour		Water supp	ly and treatr	nent engine	ering					
-	-	Note: Answ				narks. Mod	ule : 5	Marks	СО	Level
1	а	With a neat in distribution networks.		lain the radi	al system ar	nd dead enc	l system use	d 8	CO ₅	L3
	b	i) Ground le ii) Air valve iii) Pressure	ith a sketch, explain : iround level storage reservoir (GLSR)							L3
					OR				CO5	
2	a		natory notes uice valves.			owing : a.Fire	ehydrant. b. A	Air 8	CO ₅	L3
	b	the different distribution	t layout of d system in d		ystem and e	xplain the G	irid iron	7	CO ₅	L3
									CO ₅	
3	a	Infiltration G technique f.	Gallery c. Ind . Nomogram	icator organ 1s.	ism. d. Air B	nding e. Na		rb. 8	CO5	L3
	b	With sketch distribution		oriefly dead	end system	and grid irc	n system of	7	CO5	L3
					OR				CO5	
4	а	What is aera				·		8	CO5	L3
	b	Describe the advantages	e various me and disadv			water and c	discuss the	7	CO ₅	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

			Model	. Assignmer	nt Questi	ons			
Course Code:	18CV46	Sem:	4	Marks:	5	Time:	90 – 120 i	minute	S
Course:	Water su	ipply and trea	atment engi	neering					
SI	No		Assic	gnment De	scription		Marks	СО	Level
Í	1	system used networks.	in distribut		ial systen	n and dead end	5	CO5	L3
		With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.					5	CO5	L3
;	3	Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint.					5	CO5	L3
2	4	What is mear the "Nalagon	•		•	th a line diagram	5	CO5	L3
Į	5	What is aerat				rs.	5	CO5	L3
	6	Describe the discuss the a				n of water and of each.	5	CO ₅	L3
-	7	Write explana a.Firehydrant b. Air valves.	atory notes	with sketcl	h on the f	following :	5	CO5	L3
3	3		layout of di	stribution s		nd explain the Gric	1 5	CO5	L3
Ć	9	Explain fluori			tion in de	tail.	5	CO5	L3
1	0	Explain the S with a neat sl		used usual	lly in disti	ribution system	5	CO5	L3
1	1	a. Explain brie	efly : i) Deflı	uoridation ii	i) Desalin	ation.	5	CO5	L3
1	2	Write short n valve. c Metering in		-		ssure release	5	CO5	L3
1	3	Briefly explai supply scher			nent proc	ess of a water	5	CO5	L3
Ç	9	Explain the m					5	CO5	L3
1	0	Give the drinl parameters. I i) Turbidity ii)	Discuss the	ir effect wh	en they e	exceed their limits	5	CO5	L3
1	1	Enumerate the of testing of r			d chemic	al characteristics	5	CO5	L3
1	2	Write short n demands of v Air Binding e.	water b. Infi	ltration Gal	lery c. Ind	dicator organism. (5 d.	CO5	L3
1	3	With sketche system of dis			l end syst	em and grid iron	5	CO5	L3
1	4	With a neat s system used				n and dead end	5	CO5	L3
1	5	With a sketc (GLSR) ii) Air v				ge reservoir Post firhydrant.	5	CO5	L3
1	6	With a neat s system used networks.			ial systen	n and dead end	5	CO5	L3

17	With a sketch, explain :	5	CO5	L3
	i) Ground level storage reservoir (GLSR)			
	ii) Air valve			
	iii) Pressure relief valve			
	iv) Post fire hydrant.			
18	Write short notes on any Four of the following :	5	CO ₅	L3
	b. Systems of supply of water. c. House water connection.			
	d. Water meter. e. Break point chlorination.			
	f. Socket and Spigot joint.			
19	What is meant by defluoridation? Explain with a line diagram	5	CO5	L3
	the "Nalagonda technic" ofdefluoridation.			
20	What is aeration? Explain the type of aerators.	5	CO5	L3
21	Describe the various methods of distribution of water and	5	CO5	L3
	discuss the advantages and disadvantages of each.			

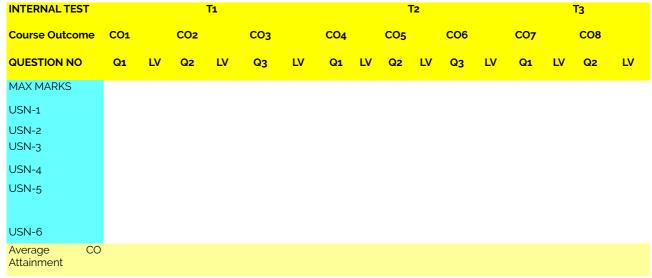
F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Water supply a	and treatment	engineering			Month /	' Year	May /	/2018
Cours		18CV46	Sem:	6	Marks:	100	Time:		180	
Code								1	minu	
Mod ule	Note	Answer all FIVI	E full questior	ns. All questic	ns carry eq	jual marks.		Marks	СО	Level
1	а	Explain necess	sity of water s	upply schem	е			6	CO1	L1
	b	Explain the var	ious types of	water demar	nd.			5	CO2	L2
	С	Mention the fa	ctors that affe	ect per capita	demand			4	CO1	L2
		OR What is meant by design period? Discuss the factors affecting design								
2	a	What is mean period.	t by design	period? Disc	uss the fac	ctors affecting	g design	6	CO2	L3
	b	Write the desir — 1991 : i) Colo vi) Iron vii) Fluo	r ii) pH iii) Tota	al hardness iv) Nitrate v) T	Total dissolve		5	CO3	L2
	С	Compute the ppopulation in the Make use of ge	he year 1930 [,]	was 25,000 a	nd in the ye			4	CO ₄	L2
3	a	Explain with ch water?	nemical equat	ions, what ha	appens whe	en alum is adc	led to	8	CO3	L2
	b	The maximum Design the dim the raw water s depth of 3.0mt	nensions of a supplies. Take	suitable recta detention tir y of flow is 20	angular sed ne period o	imentation ta	nk for	8	CO4	L2
				OR						
4	a	With the help of					y filter.	8	CO3	L3
	b	Design six slow Population to be fpcd ;Rate of fil the breadth.= 0 daily demand. by.	oe served = 50 Itration = 180 l o, 2 Assume m	0000 persons litres/hr/sq.n naximum den	s ; Per capita n ; Length o nand as 1.8	a demand = 15 of each bed = 1 times the ave	Twice rage	8	CO ₄	L3
4	a	With the help of	of a neat sket	ch explain th	e working c	of Rapid gravit	v filter	8	CO3	L3
4	b	Design six slow					.y III.	8	CO3	L3
		Population to be found to the preadth.= Control daily demand.	ltration = 180 l), 2 Assume m	litres/hr/sq.n naximum den that one unit	n ; Length o nand as 1.8	of each bed = ⁻ times the ave	Twice rage			
				OR						

5	а	write explanatory note on : i) Ozone treatment ii) UV treatment iii) Chlorination iv) Electro — Katadyn process v) Treatment with KMn04.	8	CO ₅	L3
	b	Write the comparison between soda lime process and Zeolite process of softening of water techniques	8	CO5	L3
		Well Hard Co. 1 and 1 an		00-	
6	a	With the help of a neat sketch, explain the working of Rapid gravity filter.	8	CO5	<u>L3</u>
	b	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadth.= 0, 2 Assume maximum demand as 1.8 times the average daily demand. Also assume that one unit, out of six, will be kept as stand by.	8	CO5	L3
		OR			
7	а	With a neat sketch, explain the radial system and dead end system used in distribution networks.	8	CO3	L3
	b	With a sketch, explain: i) Ground level storage reservoir (GLSR) ii) Air valve iii) Pressure relief valve iv) Post fire hydrant.	8	CO3	L3
		or			
8	а	Write explanatory notes with sketch on the following : a.Firehydrant. b. Air valves. c. Sluice valves. d. Pressure reliefvalves	8	CO ₄	L3
	b	the different layout of distribution system and explain the Grid iron distribution system in detail.	8	CO ₄	L3
		OR			
9	а	Write short notes on any four of the following : a. Five demands of water b. Infiltration Gallery c. Indicator organism. d. Air Binding e. Nalgonda technique f. Nomograms.	8	CO5	L3
	b	With sketches, explain briefly dead end system and grid iron system of distribution networks.	8	CO ₅	L3
10	_	Ny/hat is agration? Evalain the type of agrators	0	COF	
10	a b	What is aeration? Explain the type of aerators. Describe the various methods of distribution of water and discuss the	<u>8</u> 8	CO5	<u>L3</u> L3
		advantages and disadvantages of each.			

2. SEE Important Questions


Course:		Water supply and treatment engineering Month						/ Year	May /2018	
Crs Code:		18CV46	46 Sem: 6 Marks: 100 Time:					180 minute		
	Note Answer all FIVE full questions. All questions carry equal marks.				-	-				
Mod	Qno.	Important Question					Marks	CO	Year	
ule										
1	1	Explain necessity of water supply scheme						16 /	CO1	2004
								20		
	2	Explain the various types of water demand.							CO1	2004
	3	What is meant by percapita demand?							CO1	2004
	4	Mention the factors that affect per capita demand							CO1	2007
	5	What is meant by design period? Discuss the factors affecting design						n	CO1	2007
		period.								
	6	Define population forecasting. Explain methods of population Forecasting							CO1	
2	1	The population of a town is as below					16 /	CO2	2005	
		Year	population					20		
		1980	30000							
		1990	36000							
		2000	45000							

		2010 53000			
	2	Compute the population of the year 2000 and 2006 for a city whose population in the year 1930 was 25,000 and in the year 1970 was 47,000 Make use of geometric increase method.	D.	CO3	2005
	3	Give complete sequence of a water treatment plant with a flow diagral and mention the function of each treatment unit.	m	CO2	2009
	4	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	m	CO2	2006
	5	Explain with chemical equations, what happens when alum is added to water?)	CO2	2004
				CO2	0
3	1	Briefly explain the complete treatment process of a water supply schewith flow chart.	eme 16 / 20	CO2	2006
	2	What is Aeration? Explain the types of aerators.		CO2	
	3	Describe briefly the various constituents of coagulation — sedimenta plant.		CO2	2007
	4	Define sedimentation ow that settlement of the particles in sedimenta unit is independent of depth.	tion	CO ₂	2004
	5	Explain the method of determining optimum dosage of coagulant with the aid of neat sketch.	1	CO2	2004
	6	A circular sedimentation fitted with standard mechanical sludge removis to handle 5 million litres/day of sewage. Take detention period as 5 land depth of tank as 3 m. Find the dia. of the tank.		CO2	2004
4	1	Determine the dimensions of a set of rapid gravity filters for treating waverequired for a population of 50,000 with average rate of demand as 18 litres per day per person. Assume a peak factor of 1.8 by ignoring wash water requirements. Assume rate of filtration is 5001/h/sq.m	0 20	CO2	2004
	2	Give complete sequence of a water treatment plant with a flow diagram and mention the function of each treatment unit.	m	CO3	2004
	3	Explain with chemical equations, what happens when alum is added to water?)	CO3	2006
	4	The maximum daily demand at a water purification tank plant is 8 MLD Design the dimensions of a suitable rectangular sedimentation tank fo the raw water supplies. Take detention time period of 4 hours and the depth of 3.0mts. The velocity of flow is 20cm/min		CO3	2004
	5	Design six slow sand filters beds from the following data: Population to be served = 50000 persons; Per capita demand = 150 fpcd; Rate of filtration = 180 litres/hr/sq.m; Length of each bed = Twice the breadtho, 2 Assume maximum demand as 1.8 times the average d demand. Also assume that one unit, out of six, will be kept as stand by	aily	CO3	2007
5	1	Write short notes on any Four of the following: b. Systems of supply of water. c. House water connection. d. Water meter. e. Break point chlorination. f. Socket and Spigot joint.	16 / 20	CO ₄	2009
	2	What is meant by defluoridation? Explain with a line diagram the "Nalagonda technic" ofdefluoridation.		CO ₄	2007
	3	What is aeration? Explain the type of aerators.		CO ₄	2007
	4	Describe the various methods of distribution of water and discuss the advantages and disadvantages of each.		CO ₄	2004
	5	Write explanatory notes with sketch on the following: a.Firehydrant. b. Air valves. c. Sluice valves. d. Pressure relief valves		CO ₄	2005
	6	the different layout of distribution system and explain the Grid iron distribution system in detail.		CO ₄	2015

Course Outcome Computation

Academic Year:

Odd / Even semester

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome Weight of CO - PO	PO1	PO3	PO3	PO1	PO12	PO12	PO6	PO1
Course Outcome	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
Test/Quiz/Lab		T1			T2		Т	- 3
QUESTION NO	Q1	L Q2 LV V	Q3 LV	Q1 LV	Q2 LV	Q3 LV	Q1 LV	Q2 LV
MAX MARKS								
USN-1								
USN-2								
USN-3								
USN-4								
USN-5								
USN-6								
Average CO Attainment								